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1  | INTRODUC TION

Studying the grain drying control is significant (Dai, Zhou, & Zhou, 
2017; Dai, Zhou, Liu, Liu, & Zhang, 2017, 2018; Liu & Arkema, 2001; 
Liu & Bakker-Arkema, 2001; Mujumdar, 1995).Grain drying control 
is a challenging task owing to the complex heat and mass exchange 
process. It is such a long-delay nonlinear process subjected to vari-
ous affection factors that an accurate mathematical model is difficult 

to make. Hence, the classical traditional controllers have some lim-
itations in the control of grain drying and effective control strategies 
need to be further researched on.

Traditional control methods mainly include feedback control, 
forward control, forward feedback control, and other classical tra-
ditional control methods. These methods are usually designed based 
on linear transfer function and cannot deal with the changes of com-
plex nonlinear system. Some scholars have studied the limitations 
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Abstract
Grain drying control is a challenging task owing to the complex heat and mass ex-
change process. To precisely control the outlet grain moisture content (MC) of a con-
tinuous mixed-flow grain dryer, in this paper, we proposed a genetically optimized 
inverse model proportional–integral–derivative (PID) controller based on support 
vector machines for regression algorithm which is named the GO-SVR-IMCPID con-
troller. The structure of the GO-SVR-IMCPID controller consists of a genetic optimi-
zation algorithm, an indirect inverse model predictive controller, and a PID controller. 
In addition, to verify the control performances of the proposed controller in the 
simulation study, we have established a nonlinear mathematical model for the mixed-
flow grain dryer to represent the nonlinear grain drying process. Finally, the control 
performance and the robustness of the GO-SVR-IMCPID controller were simulated 
and compared with the other controllers. By the simulation results, it is shown that 
this proposed algorithm can track the target value precisely and has fewer steady 
errors and strong ability of anti-interference. Furthermore, it has further confirmed 
the superiority of the proposed grain drying controller by comparing it with the other 
controllers.
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of traditional control algorithms in the grain drying control (Liu & 
Arkema, 2001; Liu & Bakker-Arkema, 2001). Proportional–inte-
gral–derivative (PID) controller is successfully applied in the clas-
sic automatic control, but the control effect of which in the grain 
drying is not satisfactory because the controlled drying object and 
the environment are uncertain, and it cannot satisfy the control re-
quirement of grain drying with stricter restriction on drying control 
performance (Lutfy, Selamat, & Noor, 2015). Model predictive con-
trol (MPC) is effective for the long-delay nonlinear control system. 
Liu et al. have presented a MPC which was especially designed to 
control a cross-flow dryer. Field testing and simulation both showed 
the MPC performed excellence in accuracy, stability, and robustness 
(Liu & Arkema, 2001; Liu & Bakker-Arkema, 2001). However, the 
traditional MPC still depends on the system model, which is usually 
simplified on the basis of some assumptions. When using these mod-
els for control purposes, these simplifications will affect the control 
accuracy to a certain extent. The partial differential equations (PDE) 
of grain drying have good universality and wide application, but they 
are too complex to be used to carry out the real control because it 
will take more computing time to solve the complex equations and 
boundary conditions (Lutfy et al., 2015). Aiming at the difficulty 
of modeling the complex grain drying process, intelligent identifi-
cation methods such as Fuzzy logic (FL) algorithms methods or ar-
tificial neural network (ANN) are best adopted to approximate the 
nonlinear relationship, which can be used to construct controllers 
by combining MPC control, adaptive control, sliding mode control, 
backstepping control, and evolutionary algorithms (EA) or their com-
binations (Wang, Sun, & Liu, 2017).

Artificial neural network has a wide range of applications in drying 
control, which is an excellent tool to model complex, dynamic, highly 
nonlinear, unclear scientific and engineering problems (Aghbashlo, 
Hosseinpour, & Mujumdar, 2015; Çakmak & Yıldız, 2011; Dai, Zhou, 
& Zhou, 2017; Dai et al., 2017, 2018; Farkas, Remenyi, & Biro, 2000; 
Li & Chen, 2019; Li, Xiong, Wang, & Shi, 2016; Movagharnejad & 
Nikzad, 2007; Tsai & Luo, 2017). Besides ANN, support vector ma-
chines (SVM) for regression is also a promising approach to model 
the grain drying, which is superior to ANN, including generalization 
ability, ease of training, a mechanism to model structured data, and, 
most importantly, the generation of a unique solution (Hou & Zou, 
2016), However, ANNs are confronted with the problems of trapping 
local minima, slow learning, and metaparameter adjustment (Patil & 
Deka, 2016). Furthermore, compared with the traditional learning 
method based on large samples, SVM is more suitable for learn-
ing based on small samples (Colman, Waegeman, & Baets, 2015), 
so modeling the complex system with its excellent approximation 
ability would be a better way. Now, there are some relevant con-
trol literatures that use support vectors in control approximation 
(Chakrabarty, Buzzard, & Zak, 2017; Chakrabarty et al., 2017; Wei 
et al., 2017). However, there is not much research on SVM control of 
grain dryer in the literature.

The support vector machines for regression (SVR) control meth-
ods mainly include the inverse model control of SVR, the internal 
model control of SVR, and the SVR optimal control. In another study 

(Dai, Zhou, & Zhou, 2017; Dai et al., 2017, 2018), we have designed a 
genetically optimized internal model PID predictive controller (GO-
SVR-IMPC) which has proved to be effective in controlling the grain 
drying process. To further study the SVR controller for the grain 
dryer, in this paper, we proposed a SVR indirect inverse model con-
troller and compared it with different controllers including the previ-
ously designed GO-SVR-IMPC controller.

The inverse model controller of SVR (SVR-IMC) is an effective 
open-loop control method, which is based on the inverse dynamic 
theory. A pseudolinear system is formed by connecting the indirect 
inverse model and the controlled object in series, and thus, a nonlin-
ear controller can be further designed using the linear control theory. 
Because the open-loop control structure of SVR-IMC cannot handle 
the effect of the external disturbances, it is often improved by com-
bining the other methods to form a closed-loop control structure 
in actual control, of which the most effective improvement method 
is to introduce feedback control to form a closed-loop system. In 
this paper, a genetically optimized PID feedback controller based on 
a support vector inverse model algorithm (GO-SVR-IMCPID) for a 
field mixed-flow grain dryer is investigated to improve the control 
deficiency of direct inverse model controller.

This paper's contributions are as follows: In view of the modeling 
advantage of SVR that would be better on dealing with the highly 
nonlinear process of engineering based on small samples, a SVR-
IMC is designed, which is a simple and an effective open-loop con-
trol method; and then, a genetically optimized PID feedback control 
algorithm is introduced to the SVR-IMC to form a closed-loop con-
troller, and the controller performance is optimized by establishing 
a performance objective function of the grain drying control from 
decreasing the energy consumption and improving the dried grain 
quality; finally, the effectiveness of the GO-SVR-IMCPID has been 
verified in the control simulations by using a nonlinear mathematical 
drying model to represent the practical mixed-flow drying process. 
The simulations and comparisons of the control performance have 
proved the superiority of the controller designed in this paper. It is a 
better choice to control the complex grain drying process.

The rest of this article is arranged as follows: A novel grain drying 
system and the proposed mathematical model for the mixed-flow grain 
drying process are given in Section 2. In the third section, a genetic 
optimization inverse model PID controller based on SVR is proposed 
to control our designed grain drying system. Section 4 introduces and 
analyses the results of the control simulations and control perfor-
mance comparison. Finally, the work has been concluded in Section 5.

2  | A NOVEL GR AIN DRYING SYSTEM

2.1 | Experimental system

Figure 1a shows the designed combined multifunctional grain drying 
system. It mainly consists of a wet grain bin for storing wet grains, a 
5HSHF10 dryer for heating and drying grains, and a dried bin for stor-
ing dried grains. The other part is composed of five belt conveyors, 
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three bucket elevators, etc. The 5HSHF10-type grain dryer is shown 
in Figure 2, and its specific parameters can refer to Table 1. Figure 1b 
shows the 5HSHF10-type dryer whose shape is rectangular and shape 
size is 4.75 m high, 2.06 m long (thick), and 1.3 m deep (Dai, Zhou, 
& Zhou, 2017; Dai et al., 2017, 2018). The convection section of the 
grain dryer is a combination design, and there are three kinds of drying 
technique to choose by replacing the drying section. In this paper, we 
mainly discuss the control of the continuous mixed-flow grain drying 
process. The process of the continuous mixed-flow drying technology 
is as follows: the wet grains flow into the dryer from the top of the 
dryer and then pass through the mixed-flow drying section with hot 
air angle box, the radiation section, and the discharging grain section 
in sequence. Finally, according to the set grain flow rate, the final grain 
moisture content (MC) value is determined by the outlet grain MC of 
the dryer, which is evacuated from the bottom of the mixed-flow dry-
ing section at discrete variable time intervals. As shown in Figure 2, hot 
air angle box can be input and output flow arrangement alternately and 
the drying hot air is blown into the dryer from the inlet angle box and 
blown out from the outlet angle box. Because the wind in the dryer 
has the direction of concurrent-flow, counter-current, and cross-flow, 

it is named mixed-flow drying technology. Because of its continuous 
mixed-flow effect, it will produce a good dried grain quality.

In the grain drying engineering, the discharging grain speed is 
usually manually operated by a technical worker with a long-term 
drying experience, which is a time-consuming and energy-con-
suming job. To effectively control the dryer, an intelligent control 
algorithm is designed and simulated to automatically control the 
discharging grain speed in this paper. The controlled variable is the 
average outlet grain MC which is on-line measured by a capacitive 
sensor, the control variable is the grain flow rate between two sam-
pling intervals, and other affection factors are assumed as the dis-
turbance signals. In addition, energy consumptions and dried grain 
quality have been also considered in this controller design.

2.2 | The mathematical model of the dryer

A mathematical model for the mixed-flow drying process has been 
designed and introduced in detail in our previously published re-
search paper (Dai, Zhou, & Zhou, 2017; Dai et al., 2017, 2018). As 
shown in Figure 3, in the continuous mixed-flow grain dryer model, 
the grain column is divided into a series of thin layers and the drying 
time is divided into a series of intervals, wherein the drying section 
is divided into n beds, the cooling section is divided into k beds, and 
the height ∆Y shown in Figure 2 is very small, so the variation of 
air temperature and humidity in the Y direction of the element can 
be neglected. The ∆Y is equal to 0.1 m; according to the size of the 
novel dryer, n and k are equal to 20 and 30, respectively. The mixed-
flow dryer model is the collection of n-column thin bed element 
models of the drying section in the grain dryer.

The calculation steps of the dryer model are as follows: step 1: In 
the drying section with n thin layers, the drying airflows through each 
layer in turn, we can use the existing thin bed element equation to cal-
culate the next thin bed element equation; thus, at the ∆t time interval, 

F I G U R E  1   (a) The structure diagram: the mechanical system of the grain drying system. (1, 4, and 8: bucket elevators; 2: wet grain bin; 
3, 5, 6, 9, and 11: belt conveyors; 7: dried grain bin; 10: dryer; 12: storage section; 13: convection section; 14: radiation section; 16: the 
inlet wind angle box; 17: the outlet wind angle box; 18: combustion chamber; 19: grain discharging wheel; 20: the waste gas room.) (b) The 
structure diagram: the 5HSHF10-type grain dryer
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the MC distribution in the grain dryer can be calculated in turn accord-
ing to the Equation (3); step 2: As shown in Figure 4, at the next ∆t time 
interval, the lowest grain thin layer was removed, and a new thin layer 
was added to the original location of the first grain thin layer, and then, 
the MC distribution in the drying section is calculated again in light of 
step 1. Thus, step 1 and step 2 are repeated continuously, and the MC 
distribution of the grain dryer at each drying time can be worked out.

In (1), assuming that the heating of grain can be neglected, the 
drying process is regarded as an iso-enthalpy process, and the initial 

drying parameters are shown in Table 1. Mj−1: MC of the ( j − 1)th thin 
bed element, Mj: the MC of the jth thin bed element.

where 

(1)Mj=Mj−1−
k1(Mj−1−Me1)×ΔY

Vg(
1

�g
+k1Mj−1c1�−k1Me1c2�)

k1=� ∗ e−r∕(1.8∗(T1+273));

Me1=0.01e�+�∕(1.8∗(T1+273));

�=−20.4+0.075T1;

Parameters Symbol Value or expression Unit

Initial hot air temperature T1 100 °C

Hot air temperature Ta / °C

Initial MC of wheat M1 0.23 Decimal, wet 
basis (wb).

The height of a thin 
element

∆Y 0.05 m

Drying coefficients of 
wheat

k1 � ∗ e−r∕(1.8∗(T1+273)) /

Drying coefficients of 
wheat

μ 1,941 /

Drying coefficients of 
wheat

r 5,032 /

Exponent α for wheat α −20.4 + 0.075T1 /

Exponent β for wheat β 1,2522–37.3*T1 /

The grain density ρg 660 kg (wet matter)/
m−3

The specific heat of dry air Ca 1.007 kJ/kg−1

The heat of vaporization hg 2,427 + 2.17*35*(Mi−0.183) kJ/kg−1

The airflow rate Va 43,200 kg (wet 
matter) hr−1 m−2

The grain flow rate Vg 4,300 kg (wet matter) 
hr−1 m−2

TA B L E  1   Parameters and expression of 
grain in the simulation experiment

F I G U R E  3   The continuous mixed-flow grain dryer model

F I G U R E  4   The calculation model at the next ∆t time interval
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By taking the outlet MC of the ( j − 1)th thin bed element Mj−1 as 
the initial MC of the jth thin bed element, the MC change of the jth 
element can be calculated according to the above Equation (1). By 
using the Equation (1) n times, the whole grain moisture distribution 
of the drying section can be obtained.

The above continuous drying model of the grain dryer was sim-
ulated in MATLAB. Figure 5a shows that different grain flow rates 
affect the MC distribution of grain, and the faster the grain flow rate 
is, the higher the grain MC of the same bed element at the drying 
section is. Figure 5b shows that the lower the hot air temperature 
is, the higher the grain MC of the same bed element at the drying 
section is. In real grain drying control, the hot air temperature is usu-
ally set to a constant, the target value of the outlet grain MC will be 
obtained by controlling the discharging grain flow rate of the dryer. 
As shown in Figure 6, the comparison with the field batch circulat-
ing drying experiment results depicts that the model has achieved 
a better modeling accuracy and more information about this model 
can refer to the literature (Dai, Zhou, & Zhou, 2017; Dai et al., 2017, 
2018). Hence, the designed dryer model can be used to verify the 
feasibility of the designed controller of this paper.

3  | DESIGN OF THE GO -SVR-IMCPID 
CONTROLLER FOR THE GR AIN DRYING 
SYSTEM

This part mainly introduces the inverse model control theory based 
on SVR. The basic idea of IMC-SVR is to design an inverse model 
of the controlled drying process, and the feasibility of this method 
depends on the accuracy of the inverse model to a great extent. 
Compared with the ANN methods, SVR shows obvious superiority 
in this respect. So the SVR modeling method is introduced to design 
an inverse model for the controlled system to implement the identity 
map between the desired output of the system and the actual output.

3.1 | Principle of SVR

Support vector machines for regression is a new machine learning 
method proposed by Vapnik et al., which is based on statistical learn-
ing theory and structural risk minimization (SRM) principle. It was 

firstly developed to solve classification tasks and then was used to 
solve regression tasks which is called support vector machines for 
regression (SVR). SVM can solve nonlinear, small-sample, and high-
dimensional problems and has been widely used in the last decades 
(Alonso & Bahamonde, 2013; Rajaee & Boroumand, 2015; Smola & 
Schölkopf, 2004). It can map the input space to a high-dimensional 
feature space by using a kernel function and performs well for regres-
sion problems. The complexity of computation depends on the num-
ber of support vectors rather than the dimension of the sample space, 
which avoids the curse of dimensionality in some sense.

Suppose a set of training data is given as {(
xi,yi

) |xi∈Rn,yi∈Rl
}
,i=1……m, where xi is the input and yi is the 

target output, the purpose of regression with SVR is to find a func-
tion f(x) to fit all the sampling data, as shown in (2), which is close to 
the target value yi. The optimal hyperplane that SVR seeks is not to 
divide the two classes to the most extent, but to minimize the total 
variance of the sample point from the hyperplane.

Among them, ϕ(x) is the mapping form of vector x, which maps 
vector x to the high-dimensional Euclidean space of X = ϕ(x). w∈n 
and b∈ are the model parameters to be determined.

The ε-SVR method uses an insensitive loss function which has at 
most ε deviation from the actually obtained targets yi for all training 
data. This is equivalent to build a width zone of 2ε of the interval 
by taking f(x) as the center. It is considered that the prediction val-
ues that fall into the interval band are correct. Thus, the SVR primal 
problem can be formalized as (3):

where � is the penalty factor on samples out of error-ε, and the func-
tion of ε-insensitive loss is shown in (4):

The kernel function technology is adopted in the SVR model 
shown in (5).

where �j=α∗
j
−αj

(
0≤αj,α

∗
j
≤�

)
, �j is the weight coefficient of the sup-

port vector, xj is the support vector, and n is the number of support 
vectors.

The result is equivalent that the kernel function K(x, xj) enable 
operations to be performed in the input space rather than in the 
high-dimensional feature space.

�=12522−37.3T1;

� =
hg(0.9ΔY)

caVa

;

c1=
1−exp

(
r∕1.8(T1+273)

)
− r∕618

1.8(T1+273)−618
;

c2=
1−exp

(
(r−�)∕1.8(T1+273)

)
− (r−�)∕618

1.8(T1+273)−618

(2)f (x)=wT� (x)+b.

(3)min
1

2
||w2||+�

m∑
i=1

l�
(
f(xi)−yi

)

(4)l�
�
f(xi)−yi

�
=

⎧
⎪⎪⎨⎪⎪⎩

0, if
���f
�
xi
�
−yi

���≤�

���f
�
xi
�
−yi

���−�,
otherwise

(5)f (x)=

n∑
j=1

(
α∗
j
−αj

)
K
(
x,xj

)
+b=

n∑
j=1

�jK
(
x,xj

)
+b



www.manaraa.com

810  |     DAI et Al.

In this paper, the radial basis function (RBF) is adopted as the 
kernel function which has fewer required parameters and can handle 
the nonlinear relationship well shown in (6).

From the above analysis, it can be seen that three parameters:�, �
, and � need to be first determined in the SVR model.

3.2 | Design of the inverse model controller based 
on SVR (IMC-SVR)

The inverse model controller can be realized by combining the 
trained SVR inverse model with the controlled object. The inverse 
model controller structure based on SVR is shown in Figure 7 (when 

α = 1), where y is the output of the controlled object, u1 is the pre-
dicted output of the SVR inverse model gsvr, and r is the target signal.

The output expression of the SVR inverse model is shown in (7):

The actual output of the controlled drying system is as follows:

As seen from Figure 7, the SVR inverse model is directly con-
nected with the controlled object, which is an open-loop control. 
The open-loop control system cannot handle the effect of the ex-
ternal disturbances; therefore, the dynamic performance and ro-
bustness of the direct inverse model controller need to be further 
improved. In actual control, the most effectively improvement 

(6)K
(
x,xj

)
=exp(− ||x−xj||2∕

(
2∗�2

)
. (7)u1(k)=gsvr[r(k+1),r(k),...r(k+1−n),u1(k−1),...,u1(k−m)].

(8)y(k+1)= f[y(k),...y(k+1−n),u1(k),...,u1(k−m)].

F I G U R E  5   (a) The grain moisture content (MC) distribution of the continuous drying at the drying section: under different grain flow 
rate (unit: kg hr−1 m2) at T1 = 100°C. (b) The grain MC distribution of the continuous drying at the drying section: under different hot air 
temperature (unit: °C) when Vg is equal to 2,400 kg hr−1 m−2

F I G U R E  6   The outlet grain moisture content comparison
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method is to design a closed-loop system by introducing the feed-
back control.

3.3 | Design and optimization of the GO-SVR-
IMCPID controller

Aiming at the shortage of the direct inverse model controller, in 
this section, the PID control is added to the SVR inverse model 
controller, making the open-loop control turn into a closed-loop 
controller. In addition, the performance index function is designed 
by considering the equation of the energy loss and the dried grain 
quality. And to achieve the best controller effect, a genetic algo-
rithm is used to optimize the controller parameters based on the 
performance index function. Thus, the controller performance will 
be improved by combining the inverse model control of SVR, the 
PID control, and the genetic optimization algorithm. The proposed 
controller is called for short GO-SVR-IMCPID in this paper, of 
which the structure is shown in Figure 8, where u1 is the output of 
the SVR inverse model gsvr, uPID is the output of the PID controller, 
u is the superposition of u1 and uPID, and e is the error between y 
and r.

When k ≥ m + 1, the output of the PID controller is shown in (9):

where

The control input of the controlled object is shown in (12):

The output of the controlled object is shown in (13):

3.4 | Parameter optimization of the GO-SVR-
IMCPID controller based on genetic algorithm

Genetic algorithm (GA) is an efficient stochastic search algorithm for 
solving optimization problems in artificial intelligence. It mimics the 
process of biological evolution by the processes of selection, crosso-
ver, and mutation, and is used to search the optimal solutions with the 
minimum fitness function value in the population of each iteration.

In this design, the PID parameters kp, ki, and kd are optimized to 
improve the control process by using the GA, of which the ranges are 
within [−10 10]. The performance objective function of grain drying 
is the minimum of the function J, which is established from the two (9)uPID(k)=uPID(k−1)+kpΔe(k)+kie(k)+kd

[
Δe(k)−Δe(k−1)

]

(10)e(k)= r(k)−y(k)

(11)Δe(k)=e(k)−e(k−1).

(12)u(k)=u1(k)+uPID(k).

(13)y(k+1)= f[y(k),...,y(k+1−n),u(k),...u(k−m)].

F I G U R E  7   Structure of the inverse 
model controller based on support vector 
machines for regression

F I G U R E  8   The structure of the GO-
SVR-IMCPID
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aspects of decreasing the efficient energy consumption and improv-
ing the dried grain quality shown in (14):

where e means the input error; N is the total sampling event number; tr 
means the rising time; w1, w2, w3, w4, and w5 are the weights; u means the 
output of the controller; y(k) is the output of the controlled system and 
the output error erry(k)= y (k) − y(k − 1); E is the total energy consumption 
of all sampling events shown in (15); the penalty function is used to avoid 
overshoot (w5 » w1); and � is the size of the overshoot to be controlled.

In (15), Mk is the average outlet grain MC of the kth sampling 
event of the drying section, decimal (wet basis, wb); Mi is the average 
inlet grain MC of the drying section, decimal (wb).

In addition, the initial optimal parameter values by the GA are 
as follows: the generations of evolution: 60; the population size: 10; 
the individual number: 3; and the probability of selection, crossover, 
and mutation are respectively 0.9, 0.6, and 0.01. Figure 9 shows the 
fitness curve of simulation. After 60 generations of iteration, the 
optimal value of J is equal to 47.6, and the optimal parameters are 
equal to −5.0769, −9.9255, and −0.7240, respectively.

4  | E XPERIMENTAL RESULTS AND 
ANALYSIS

4.1 | Simulation experiment initialization

In simulation, assuming the model errors are zero, the continuous 
mixed-flow drying model based on the Equation (1) is used to verify 

the effectiveness of the designed controller. The discharging grain 
flow rate of the dryer is taken as the control variable, and the outlet 
grain moisture of the drying section is taken as the controlled vari-
able. In a certain time and drying condition, the hot air temperature, 
the airflow, and the initial grain temperature and moisture are not 
changed basically, so the variations of which can be regarded as the 
interferences in the control of grain dryer.

In this paper, we adopted the ε-SVR type as the inverse model of 
which the parameter values δ and ε are respectively 1,200 and 0.001, 
the width parameter γ of the adopted RBF function is equal to 2, and 
the simulation time is 200 sampling events. The ε-SVR inverse model is 
trained with the training sample D2 which is obtained by the identifica-
tion experiment. The constructed sampling data structure is as follows:

4.2 | Modeling and generalization experiment of the 
inverse model based on SVR

In the identification experiment, the random noise input signal 
within a magnitude range of 0–4,000 kg hr−1 m2 is used to imitate 
different grain flow rates in the process of continuous drying. The 
system output is the final obtained outlet grain MC values of the 
drying section. The prediction simulation results of the identified 
SVR inverse model are shown in Figure 10, of which the output is the 
predicted grain flow rate in the requirement of different final outlet 
grain MC. It can be seen that the model errors are mostly within 10–3 
order of magnitude, which shows that the SVR inverse model has a 
higher accuracy (RMSE: 0.038; R: 99.5%).

4.3 | Control simulation experiment results

4.3.1 | The simulation results of the tracking control

In the tracking control simulation, the sample number is 600, the initial 
grain moisture is 23% (wb), the temperature of the hot air is equal to 
100°C, and the tracked input signals are respectively the step signal 
with a magnitude of 15% imitating the final controlled outlet MC value, 
the sinusoidal signal, the sawtooth signal, and the square wave signal. 
In addition, the initial grain flow rate is set to 3,000 kg hr−1 m2, and the 
grain flow rate is controlled by the proposed controller at the sampling 
event which is equal to the dwell time in a bed element. The controlled 
object is the outlet grain MC of the drying section. According to the 
drying model simulation experiment based on the Equation (1), the dry-
ing section is supposed to be equal to 20 bed elements. By connecting 
the established inverse model with the original controlled system in se-
ries and combining with the genetically optimized PID output feedback 

(14)

Min(J)=

⎧
⎪⎨⎪⎩

∑N−1

k=1
[w1 �e(k)�+w2u

2(k)]+w3 ∗ tr+w4 ∗E, if �erry(k)�≤ 𝜉

∑N−1

k=1
[w1 �e(k)�+w2u

2(k)+w5 �erry(k)� ]+w3 ∗ tr+w4 ∗E, if �erry(k)�>𝜉

(15)E=
∑N

k=1
hg ∗Vg ∗ (Mk −Mi).

(16)

⎧
⎪⎪⎨⎪⎪⎩

D2=
�
(X(k−2) ,Y(k−2)),k=3,...,199}

X(k−2)={y(k+1),y(k),y(k−1),u(k−1),u(k−2)}

Y(k−2)=u(k)

F I G U R E  9   The fitness curve of simulation in every generation



www.manaraa.com

     |  813DAI et Al.

controller, the simulations of tracking control in the various input signal 
have been tested shown in Figure 11.

As seen from Figure 11a, in the tracking control to the step sig-
nal, the GO-SVR-IMCPID can rapidly and steadily adjust the out-
put to the target value of 15% by controlling the grain flow rate at 
every sampling event, of which the overshoot is smaller, the output 
errors are mostly controlled within the range of 0.001 in about 50 
sampling intervals, and the final steady-state errors are controlled 
within 10–13 order of magnitude. Furthermore, it can be seen from 
Figure 11b–d, under the other three tracking signals, the proposed 
controller also has excellent tracking performances, of which the 
output can be rapidly adjusted to the target value with a good preci-
sion of control. Hence, the tracking control performances under four 
typical target signals show that the proposed GO-SVR-IMCPID has 
a good dynamic performance with smaller overshoot, shorter rising 
and adjusting time, and high accuracy. The tracking control ability 
under four typical signals demonstrates the efficiency of the pro-
posed controller for the nonlinear grain drying process.

4.3.2 | The anti-interference test results

To access the anti-interference control performance of the proposed 
controller, we adopted two-step disturbance signals imitating sud-
den changes in the outlet grain MC caused by the effect of the in-
terference signals, one of which is with a magnitude of 0.04 at the 
sample event of 100, and the other of which is with a magnitude of 
−0.04 held for 30 sampling events at the sample event of 150.

The anti-interference simulation results are shown in 
Figure 12a,b, and the simulation comparison results with the PID 
controller and the SVR-IMC controller are shown in Figure 12c,d.

It can be seen from Figure 12a that the output of the GO-SVR-
IMCPID control system can be adjusted to the target value rapidly 

and steadily when the disturbances exist, and the fluctuations 
caused by the disturbances can be rejected rapidly, and the steady 
errors are smaller, showing an excellent anti-interference ability. 
Figure 12b shows the GO-SVR-IMCPID controller can response to 
the first and the second output disturbance rapidly by decreasing 
and increasing the grain flow rate to a suitable value, respectively. 
Furthermore, as seen from Figure 12c, it can also be seen that 
the GO-SVR-IMCPID controller is better to the other two com-
pared controllers according to the control performance compari-
son when an interference exists during the drying process; For the 
same test, the GO-SVR-IMC controller has no ability to restrain 
the effect of the output disturbances because of the open-loop 
control structure, although it can achieve an accurate tracking 
control in the absence of interference. For the PID controller, it 
can suppress the effect of the disturbances, but the fluctuations 
caused by the disturbances are larger than that of the GO-SVR-
IMCPID controller. Figure 12d shows the control signal (the grain 
flow rate) output comparison of different controllers, from which 
it can be seen that the GO-SVR-IMCPID controller performs well, 
while there is no change in the grain flow rate of the GO-SVR-IMC 
when the inference comes, and the fluctuations of the control sig-
nal of the PID controller is larger than the GO-SVR-IMCPID. The 
simulation results show that the GO-SVR-IMCPID has improved 
the control performance of the GO-SVR-IMC controller and the 
PID controller, and it performs best under uncertainty output dis-
turbances circumstances.

4.3.3 | The robustness test results

To evaluate the robustness of the proposed controller when the 
system parameters were changed, two robustness tests were car-
ried out, one of which was to study the response ability of the 

F I G U R E  1 0   (a) The prediction simulation results of the identified support vector machines for regression (SVR) inverse model: the 
output. (b) The prediction simulation results of the identified SVR inverse model: the output relative error
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system to the variation of the drying hot air, the other of which 
was to investigate the response ability of the system to the 
change of the initial inlet grain MC. Suppose that the tempera-
ture of hot air at 200 sampling points suddenly rises to 110°C and 
then dropped to 60°C after the 400th sampling points shown in 
Figure 13a, the first robustness simulation results to the change 
of the hot air are shown in Figure 13b,c. Figure 13d,e shows the 
simulation result comparison of the first robustness test with the 
other two controllers.

Figure 14a,b shows the second robustness simulation results 
when the initial inlet moisture suddenly rose to 28% (wet base) at 
the 200th sampling points and then dropped to 27% (wb) after the 
400th sampling points, and Figure 14c,d shows the simulation re-
sult comparison of the second robustness test with the other two 
controllers.

The first robustness test analysis is as follows: It can be seen 
from Figure 13b that the GO-SVR-IMCPID controller can make 
an immediate response to the change of the hot air temperature 

F I G U R E  11   (a) The tracking control results of the control system: To the step signal. (b) The tracking control results of the control 
system: To the sinusoidal signal. (c) The tracking control results of the control system: To the square wave signal. (d) The tracking control 
results of the control system: To the sawtooth signal
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to counteract the disturbance effect by increasing the grain flow 
rate after the 200th sampling event and by decreasing the grain 
flow rate after the 400th sampling event. As shown in Figure 13c, 
the outlet grain MC can be rapidly adjusted to the steady target 
value again when the hot air temperature changes. As seen from 
Figure 13d, the GO-SVR-IMCPID controller performs best with 
a rapid response speed, smaller overshoot, and good robustness 
performance among the compared three controllers; however, for 
the same robustness test, the GO-SVR-IMC controller cannot re-
spond to adjust the system output to the target value when the 
hot air temperature is changed; although the PID controller man-
ages to handle the first variation of the hot drying air after the 
200th sampling event, it cannot resist the effect of the second 
change of hot drying air, showing an undesirable oscillatory be-
havior after the 400th sampling event. Figure 13e compares the 
output of the grain flow rate generated by the three controllers, 
which shows that the control signal of the GO-SVR-IMCPID can 
be adjusted to realize the tracking control of the target value with 
the change of the hot air temperature; however, the control signal 
of the GO-SVR-IMC controller has no response to the variation of 
the hot air temperature, and the control signal of the PID controller 

shows an oscillatory behavior in the second variation of the hot air 
temperature.

The second robustness test is as follows: As seen in Figure 14a, 
to avoid overdrying or insufficient drying, the control signal does 
not change immediately when the initial inlet grain MC changes, 
but begins to change when the unaffected grains in the drying sec-
tion have been evacuated which is equal to 20 thin drying beds 
according to the model simulation verification. It shows that the 
GO-SVR-IMCPID controller can rapidly adjust the output back to 
the desired outlet MC after 20 sampling events when the initial 
grain MC changes and the output errors affected by the distur-
bance are smaller. It can be seen from Figure 14b that the control 
signal of the GO-SVR-IMCPID controller firstly goes down to re-
sist the effect caused by the initial grain MC increase at the 220th 
sampling time and then rises up to resist the effect caused by the 
initial grain MC decrease after the 420th sampling time. From the 
comparison of the three controllers shown in Figure 14c,d, it can 
be seen that the GO-SVR-IMC controller and the PID controller 
show an unsatisfactory control performance in handling the dis-
turbance, of which the system output cannot be adjusted to the 
target value steadily when the initial grain MC changes, and the 

F I G U R E  1 2   (a) The anti-interference simulation results of the GO-SVR-IMCPID: the system response for the two disturbances at the 
sampling event k = 100 and k = 150. (b) The anti-interference simulation results of the GO-SVR-IMCPID: control signal-the grain flow rate. (c) 
The anti-interference simulation results of the GO-SVR-IMCPID: the anti-inference simulation comparison results with the other signals. (d) 
The anti-interference simulation results of the GO-SVR-IMCPID: control signal comparison of different controllers
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grain flow rate of the GO-SVR-IMC controller has no response to 
the initial grain MC changes. And the grain flow rate of the PID 
controller shows a bigger oscillatory behavior in handling the 
disturbance.

In addition, from the simulation results of Figures 12‒14, it can 
also be seen that the PID controller has a larger overshoot in tracking 
the target value than the GO-SVR-IMCPID controller at the begin-
ning of the target signal.

F I G U R E  1 3   (a) The first robustness test results to the change of the hot air: the hot air temperature change. (b) The first robustness test 
results to the change of the hot air: the outlet grain moisture content of the drying section. (c) The first robustness test results to the change 
of the hot air: the change of control signal—the grain flow rate. (d) The first robustness test results to the change of the hot air: the robust 
test comparison of different controllers. (e) The first robustness test results to the change of the hot air: the control signal comparison of 
different controllers
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4.3.4 | Comparison with the previously designed 
GO-SVR-IMPC controller

The tracking control and the robustness test performances with GO-
SVR-IMPC previously designed in another paper (Dai et al., 2018 are 
compared when the inlet grain MCs suddenly change. The compari-
son results are shown in Figures 15 and 16, respectively. From the 
comparison results, it can be seen that the control effects of the two 
controllers are both excellent. Among them, the GO-SVR-IMCPID 
controller designed in this paper has better control performance 
than the GO-SVR-IMPC. It has shorter time to reach the target value 
and smaller overshoot in tracking control of the target value. For 
the GO-SVR-IMCPID controller, when the inlet MCs of grain in the 
machine suddenly change, the time to adjust the output to the target 
value is shorter and the fluctuation is smaller. Based on the same 
performance objective function, the performance index J value of 

GO-SVR-IIMCPID controller is equal to 46.7, which is 18.8% smaller 
than that of GO-SVR-IMPC controller, which is equal to 57.5.

In all, in this study, the effectiveness of the GO-SVR-IMC con-
troller in controlling the complex grain drying process has been 
demonstrated by the tracking control, the antidisturbance test, two 
robustness tests, and the control performance comparison with the 
other compared controllers.

5  | CONCLUSION

In this paper, an intelligent controller (GO-SVR-IMCPID) based on 
SVM modeling method for a grain dryer is proposed. It combines in-
verse model control algorithm, traditional PID algorithm, and genetic 
optimization algorithm. The inverse model control is an open-loop 
control method, which is simple and feasible in the situation of no 

F I G U R E  14   (a) The second robustness test results to the change of the initial inlet grain moisture content (MC): the inlet grain MC 
change and the system response result. (b) The second robustness test results to the change of the initial inlet grain MC: the change 
of control signal—the grain flow rate. (c) The second robustness test results to the change of the initial inlet grain MC: the robust test 
comparison of different controllers. (d) The second robustness test results to the change of the initial inlet grain MC: the control signal 
comparison of different controllers
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disturbances, and it forms a pseudolinear system by connecting the 
inverse system to the original system. However, there are two draw-
backs, one of which is that the controller has no ability to handle the 
external disturbance, and the other of which is that the accuracy 
of the controller depends on the modeling precision of the inverse 
model. In this paper, a closed-loop IMC optimization controller based 
on SVR is designed by introducing PID feedback controller, SVR 
modeling method, and GO algorithm from the perspective of energy 
consumption and dried grain quality. To verify the feasibility of the 
GO-SVR-IMCPID in controlling the grain dryer, a nonlinear math 
model of continuous mixed-flow drying process has been adopted to 
verify the control ability of the controller. The simulations of tracking 
control, anti-interference test, and robustness test have been made 
by programming in MATLAB. The simulation results show that the 
GO-SVR-IMCPID has good tracking control performance, strong 
ability of anti-interference, and good robustness performance. As 
seen from the simulation results, although the SVR inverse model 
controller (GO-SVR-IMC) has good tracking control performance 
under the condition of no interference, it has no ability to cope with 
the effect of external disturbances and parameter changes, in addi-
tion, although the PID controller can deal with some interferences, 

the fluctuations caused by the disturbances are bigger; furthermore, 
it cannot handle the effect of such parameter changes as the hot air 
or the inlet moisture MC, showing some unsatisfactory oscillatory 
behavior. By comparing with different controllers including the pre-
viously designed GO-SVR-IMPC controller, the experimental results 
have demonstrated that the GO-SVR-IMCPID has excellent control 
performances in controlling the complex grain drying process. It pro-
vides a good reference for the field control of grain dryer.
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